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Abstract

The cutoff phenomenon for ergodic Markov processes was discovered towards the end
of the last century, notably by David Aldous and Persi Diaconis, in the case of random
walks on finite spaces. Since then, it has been the subject of intense exploration by the
probabilistic community worldwide. Despite the accumulation of numerous results, there is
still no general theory. The case of diffusion processes has been explored in detail, particularly
by Laurent Saloff-Coste, in connection with notions of curvature, dimension, and diameter,
as well as Sobolev-type functional inequalities. The present research stay memoir explores
the cutoff phenomenon in various Markov processes, highlighting the challenges posed by
existing methods and proposing directions for future research. This work builds on recent
results and seeks to generalize them to different types of diffusions and spaces, pursuing two
main objectives concerning this phenomenon: (1) to complete the study conducted by Chen
and Saloff-Coste [10] by observing their cutoff condition for various distances, (2) to examine
how the cutoff condition found by Salez in [23] for curved finite Markov chains can be more
generally applied to diffusion processes under curvature conditions, both in compact and
non-compact spaces.
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1. Introduction to the cutoff phenomenon

Recently, the cutoff phenomenon has been examined for Dyson diffusions arising from random
matrix theory. Also, the case of finite Markov chains with total variation distance has recently
been thoroughly studied by Justin Salez using the notion of varentropy, an approach that avoids
upper and lower bounds.

1.1. Cutoff Phenomenon

Let us consider an ergodic Markov process X = (Xt)t⩾ 0 with a state space S and a unique
invariant law π for which

lim
t→∞

dist(Law(Xt) | π) = 0,

where dist(· | ·) is a distance or divergence on probability measures on S.

Suppose now that X = Xn depends on a parameter of dimension, size, or complexity param-
eter n, and let us set S = Sn, π = πn, and X0 ∼ µn0 ∈ P(Sn).

Examples 1.
− Sequence of transition matrices (Pn) on a fixed finite space.
− System of n particles: n independent one-dimensional Ornstein-Uhlenbeck processes.
− Brownian motion on the sphere Sn.

Observations (Cutoff Phenomenon). In many of such examples, it has been proved that when
n is sufficiently enough, the supremum over a certain set of initial conditions µn0 of the quantity
dist(Law(Xnt ) | πn), collapses abruptly to 0 when t crosses a critical value c = cn which may
depend on n.

More precisely, if dist ranges from 0 to max, then, for some sets of initial conditions Sn0 ⊂
P(Sn), we define the cutoff phenomenon as follow :

Definition 2 (Cutoff). We say that the sequence (Xnt ) exhibits a cutoff if there exists some
critical value c = cn such that for all η ∈ (0, 1),

lim
n→∞

sup
µn0∈Sn0

dist(Law(Xntn) | π
n) =

{
max if tn = (1− η)cn,

0 if tn = (1 + η)cn.

To quantify this critical value, we introduce the following quantity:

Definition 3 (Mixing Time). For an arbitrarily small threshold ε > 0,

tnmix(ε) := tn,dist
mix (ε, Sn0 ) := inf{t ⩾ 0 : sup

µn0∈Sn0
dist(Law(Xnt ) | πn) ⩽ ε}

Of course, such a definition fully makes sense as soon as the following monotonicity condition is
satisfied:

Definition 4 (Monotonicity). The process is monotone for dist if from a certain rank n:

dist∗n : t 7−→ sup
µn0∈Sn0

dist(Law(Xnt ), π
n) is decreasing.

Remark 5. From the definition of the mixing time, we hence have that for all t ⩾ 0:

t > tnmix(ε) =⇒ sup
µn0∈Sn0

dist(Law(Xnt ) | πn) ⩽ ε,

t < tnmix(ε) =⇒ sup
µn0∈Sn0

dist(Law(Xnt ) | πn) > ε.
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The following proposition provides us a second viewpoint (temporal) of cutoff phenomenon:
the distance to equilibrium remains close to its maximal value for a long time, and then suddenly
drops to zero on a much shorter time-scale. We will then explore these two different perspectives
further.

Proposition 6 (Characterization). Supposed that max = 1 and that (Xnt ) is monotone for dist.
Then the process (Xnt ) exhibits a cutoff if and only if:

∀ ε ∈ (0, 1) :
tnmix(1− ε)

tnmix(ε)
= 1 + o

n→∞
(1).

Proof. "=⇒" : Let cn be the critical value as in the definition.
(1) (pseudo-uniqueness): Let’s first show that if there exists a second critical value dn, then

dn ∼ cn. By contradiction, let us suppose that:

∃ η ∈ (0, 1), ∀n ∈ N, ∃φ(n) ⩾ n :

∣∣∣∣ cφ(n)dφ(n)
− 1

∣∣∣∣ > η,

i.e. by extracting a subsequence, we can assume that:

∀n ⩾ 1 : cφ(n) > (1 + η)dφ(n) (or cφ(n) < (1− η)dφ(n)).

By the hypothesis on cn, we have:

lim
n→∞

dist∗φ(n)((1 + η)dφ(n)) −−−→
n→∞

max = 1,

which is absurd by the definition of dn.
(2) (pseudo-uniqueness): From (1), it suffices to show that, for all 0 < ε < 1, tnmix(ε) is a critical

value. By monotonicity and by definition of the infimum:

∀ t ⩾ tnmix(ε) : dist∗n(t) ⩽ ε and ∀ t < tnmix(ε) : dist∗n(t) > ε.

Hence, for all η ∈ (0, 1) :

lim
n→∞

dist∗n((1 + η)tnmix(ε)) ⩽ ε and lim
n→∞

dist∗n((1− η)tnmix(ε)) > ε.

"⇐=" : Let’s find the critical value cn from the definition.
(1) Let’s show that there exists (cn) such that for every ε ∈ (0, 1), cn ∼ tnmix(ε) (independent of

ε). For 0 < ε < ε′ < 1
2 (so 1− ε > 1− ε′), by the definition of mixing time :

tnmix(ε
′) ⩽ tnmix(ε) and tnmix(1− ε) ⩽ tnmix(1− ε′) ⩽ tnmix(ε

′) ⩽ tnmix(ε),

and tnmix(ε) ∼ tnmix(1− ε). Denoting cn := tnmix(ε) ∼ tnmix(ε
′), we obtain the result.

(2) Let η, ε ∈ (0, 1). Since cn ∼ tnmix(ε), there exists nε,η ∈ N, such that:

∀n ⩾ nε,η :

∣∣∣∣ tnmix(ε)

cn
− 1

∣∣∣∣ ⩽ η =⇒ ∀n ⩾ nε,η : |tnmix(ε)− cn| ⩽ ηcn.

Hence, for every ε ∈ (0, 1), there exists nε,η ∈ N such that for every n ⩾ nε,η :

(1 + η)cn > tnmix(ε) > (1− η)cn.

Thus, by Remark 5 :

∀ ε > 0, ∃nε,η ∈ N, ∀n ⩾ nε,η : dist∗n((1 + η)cn) ⩽ ε,

hence
∀ ε > 0 : lim

n→∞
dist∗n((1 + η)cn) ⩽ ε.

We do the same with tnmix(1− ε).
□

Remark 7. We do not need the process to be reversible or the state space to be compact. The
analysis can be easily refined using a cutoff window concept.

Now that we have formalized this phenomenon, we specify the two main components used:
(i) distances or divergences,
(ii) the type of ergodic Markov process: diffusions.
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1.2. Distance selection and comparative analysis

The cutoff phenomenon is intrinsically linked to the chosen distance. Therefore, we quantify
the tendency to equilibrium of ergodic Markov processes for the following standard distances
or divergences: Wasserstein, total variation (TV), Hellinger, Kullback Entropy, χ2, Lp(π) and
Fisher. It is important to note that for comparable distances or divergences (in a certain sense
of comparison and for a particular process), it is sufficient to address the cutoff for the simplest
distance to use.

Distances

• Transport Distance: Wasserstein-Kantorovich-Monge

Definition 8 (Transport Distance: Wasserstein-Kantorovich-Monge). The Wasserstein distance
of order 2 and with respect to the underlying Euclidean distance is defined for all probability
measures µ and ν on Rn by

Wasserstein(µ, ν) =

 inf
X∼µ
Y∼ν

E
[
|X − Y |2

]1/2

∈ [0,+∞]

where |x| =
√
x21 + · · ·+ x2n.

• Total Variation Distance

Definition 9 (Total Variation Distance). The total variation distance between probability mea-
sures µ and ν on the same space is given by:

∥µ− ν∥TV = sup
A∈BX

|µ(A)− ν(A)| ∈ [0, 1].

Proposition 10 (Total Variation Distance Densities). If µ and ν are absolutely continuous with
respect to a reference measure λ with densities fµ and fν , then:

∥µ− ν∥TV =
1

2

ˆ
|fµ − fν | dλ =

1

2
∥fµ − fν∥L1(λ) .

• Hellinger Distance

Definition 11 (Hellinger Distance). The Hellinger distance between probability measures µ and
ν with densities fµ and fν with respect to the same reference measure λ is given by:

Hellinger(µ, ν) =
1√
2

∥∥∥√fµ −√fν∥∥∥
L2(λ)

=

(
1−
ˆ √

fµfνdλ

)1/2

∈ [0, 1].

Remark 12. This quantity does not depend on the choice of λ. Note that an alternative normal-
ization is sometimes considered in the literature, making the maximum value of the Hellinger
distance equal to

√
2.

• Relative Entropy: Kullback-Leibler Divergence

Definition 13 (Relative Entropy: Kullback-Leibler Divergence). The Kullback-Leibler diver-
gence or relative entropy is defined by

Kullback(ν | µ) =


ˆ

log
dν

dµ
dν =

ˆ
dν

dµ
log

dν

dµ
dµ ∈ [0,+∞] si ν ≪ µ

∞ sinon.
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• Chi-square Divergence

Definition 14 (Chi-square Divergence). The chi-square divergence is given by

χ2(ν | µ) =


∥∥∥∥dνdµ − 1

∥∥∥∥2
L2(µ)

=

∥∥∥∥dνdµ
∥∥∥∥2
L2(µ)

− 1 ∈ [0,+∞] si ν ≪ µ

∞ sinon.

Proposition 15. If µ and ν have densities fµ and fν with respect to a reference measure λ then:

χ2(ν | µ) =
ˆ (

f2ν /fµ
)
dλ− 1.

• Lp(π) Distance

Definition 16 (Distance Lp(π) to equilibrium). For any p ∈ [1,∞] and t ⩾ 0, it is defined as
follows:

∥µt − π∥p :=


∥ht − 1∥Lp(π) if µt ≪ π with dµt

dπ = ht,
1
2 if µt ̸≪ π and p = 1,

∞ if µt ̸≪ π and p > 1.

Proposition 17 (Duality). For any (p, q) conjugate pairs, and if µt ≪ π with dµt
dπ = ht, then:

∥µt − π∥p = sup{(µt − π)(g) : g ∈ Lq(π), ∥g∥Lq = 1}.

In particular, the cases p ∈ {1, 2} correspond respectively to the χ2 divergence and the total
variation distance:

∥µt − π∥L1 = 2 ∥µt − π∥TV and ∥µt − π∥2L2 = χ2(µt∥π).

Proof. The Lp − Lq duality yields:

∥ht − 1∥Lp = sup

{ˆ
g(ht − 1)dπ : g ∈ Lq(π), ∥g∥Lq = 1

}
,

So, if µt ≪ π, then

∥µt − π∥p = sup{(µt − π)(g) : g ∈ Lq(π), ∥g∥Lq = 1}.

In the cases p ∈ {1, 2}:

∥ht − 1∥22 =
ˆ
(h2t − 2ht + 1)dπ = ∥ht∥22 − 1 = Varπ(ht) = χ2(µt∥π),

∥ht − 1∥1 = sup
f∈L∞(π)

ˆ
(ht − 1)fdπ = 2 sup

A
|µt(A)− π(A)| = 2 ∥µt − π∥TV .

□

• Divergence: Fisher Information

Definition 18 (Divergence: Fisher Information). The (logarithmic) Fisher information or di-
vergence is defined by

Fisher(ν | µ) =
ˆ ∣∣∣∣∇ log

dν

dµ

∣∣∣∣2 dν =

ˆ ∣∣∣∇dν
dµ

∣∣∣2
dν
dµ

dµ = 4

ˆ ∣∣∣∣∣∇
√

dν

dµ

∣∣∣∣∣
2

dµ ∈ [0,+∞]

if ν is absolutely continuous with respect to µ, and Fisher (ν | µ) = +∞ otherwise.



6 SAMUEL CHAN-ASHING

Comparative analysis

Let dist1, dist2 be two distances/divergences.

Definition 19 (Domination). Let (fn)n⩾ 1 be a sequence of functions such that each fn is a
continuous, increasing function with fn(0) = 0. We say that dist2 dominates dist1 under (fn)
for (Xt) if for all n ⩾ 1:

∀ t ⩾ 0 : dist1(µt | π) ⩽ fn(dist2(µt | π)).

Proposition 20 (Comparison of Mixing Times). If dist2 dominates dist1 under (fn) for (Xt),
then for ε ∈ (0, 1):

tn,dist1mix (fn(ε)) ⩽ tn,dist2mix (ε).

Proof. Since fn is increasing, for all ε ∈ (0, 1) and t ⩾ 0:

dist2(µt | π) ⩽ ε =⇒ dist1(µt | π) ⩽ fn(ε).

□

Proposition 21 (Comparison Product Condition). Supposed that max = 1 and that (Xnt ) is
monotone for dist1 and dist2. Let dist1, dist2 be such that dist2 (resp . dist1) dominates dist1
(resp . dist2) under (fn) (resp . (gn)) for (Xt). If the process (Xnt ) exhibits a cutoff for dist1,
then it exhibits a cutoff for dist2.

Proof. Straightforward since we have:

tn,dist2mix (gn ◦ fn(ε)) ⩽ tn,dist1mix (fn(ε)) ⩽ tn,dist2mix (ε).

□

1.3. Toy model: Dyson-Orstein-Uhlenbeck process

There is no general theory on cutoff, so our goal is to contribute insights and ideas to this theory.
We focus mainly on diffusions and aim to establish a general criterion. To do this, we will use
a simple toy model of diffusion: the Ornstein-Uhlenbeck process. A slightly more complex toy
model will then be the Dyson-Ornstein-Uhlenbeck process. There are other relevant examples
that we will describe later, namely:
− Brownian motion on the torus and on the sphere,
− The (M/M/∞)n queueing process,
− Dyson type dynamics associated to the Laguerre and Jacobi beta ensembles.

Ornstein-Uhlenbeck process

Among the few models for which the SDE has an explicit solution in terms of stochastic com-
ponent, we find equations whose drift (b(t, x)) and diffusion coefficient (σ(t, x)) are linear in
the state variable x. The Ornstein-Uhlenbeck process is one such example with the additional
property that its law is completely computable.

Definition 22 (Ornstein-Uhlenbeck Process). Any process defined by the stochastic differential
equation:

dXt = −θXt dt+ σ dBt, X0 ∼ µ0(θ, σ),

where θ ∈ R, σ > 0 are constants, and µ0(θ, σ) is independent of B.

Remark 23. This model is particularly rich and interesting from a statistical perspective and
can be studied from various angles since all computations are explicit (which is exceptional for
a diffusion model).
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The infinitesimal generator of an OU process is to be interpreted as follows: the differential
of f at x is a linear form on E, which is applied to the vector x itself.

Proposition 24 (Infinitesimal Generator). It is the second-order elliptic operator defined for all
f ∈ C2(Rn) by:

Gf =
σ2

2

n∑
i=1

∂2iif − θ
n∑
i=1

xi∂if =
σ2

2
∆f − θx · ∇f.

Theorem 25 (Mehler Formula). Any OU process in Rn can be written as:

Xt = xe−θt + σ

ˆ t

0
eθ(s−t)dBs.

In particular, the OU process is a (non-centered) Gaussian process and for any t ⩾ 0:

Xt ∼ µxt := N
(
xe−θt,

σ2

2

1− e−2θt

θ
In

)
.

Moreover, its coordinates are independent one-dimensional OU processes with initial condition
xi and a unique invariant law N

(
0, σ

2

2θ

)
.

Dyson-Ornstein-Uhlenbeck process

A Dyson process is a diffusion that describes a system of n one-dimensional Brownian particles
interacting, subject to a confinement potential V and pairwise singular repulsion β ⩾ 0. This
kind of process was essentially discovered by Dyson (in the cases β ∈ {1, 2, 4} and for Coulomb
interaction), as it describes the dynamics of the eigenvalues of symmetric/hermitian/symplectic
random n× n matrices with independent Ornstein-Uhlenbeck entries.
The Dyson-Ornstein-Uhlenbeck process is the case where the confinement potentiel comes from
Coulomb interaction :

V(x) =
x2

2
.

Definition 26 (DOU process). Any solution X := Xn on Rn of the SDE defined for all 1 ⩽ i ⩽ n
by:

dXit =

−Xit +
1

n

n∑
j ̸=i

β

Xit −Xjt

dt +

√
2

n
dBt, X0 = x0 ∈ Rn,

where β ⩾ 0 is the singular repulsion.

Remark 27 (Non-interacting case). Note that in the case without interaction (β = 0), the n
particles are therefore independent one-dimensional Ornstein-Uhlenbeck processes. In particular,
they still collide but since they do not interact, this poses no problem.

Remark 28 (Mean-field type parametrization).
− (Scale): We take an inverse temperature of order n in order to obtain a mean field limit

without modifying the process over time.
− (Empirical measure): The process is actually a solution of the SDE:

dXit = b(Xit, µ̂
N
t )dt + σ(Xit, µ̂

N
t )dBt, X0 = x0 ∈ Rn,

where the drift and diffusion coefficient are given respectively by:

b(x, µ) = −x+

ˆ
β

|x− y|
µ(dy) and σ(x, µ) = σ := const > 0.

The drift in the above SDE is the gradient of the following function which can be interpreted as
the energy of the configuration of particles x1, . . . , xn.



8 SAMUEL CHAN-ASHING

Definition 29 (Energy). The energy related to the confinement potential V ∈ C2(R,R) is:

E : (x1, . . . , xn) 7−→ n

n∑
i=1

x2i
2

+ β
∑
i>j

log
1

|xi − xj |
.

Remark 30 (DOU SDE in term of energy). The SDE can be rewritten as:

dXit = − 1

n
∇E(Xt)dt +

√
2

n
dBt, X0 = x0 ∈ Dn.

Proposition 31 (Infinitesimal Generator). It is the second-order elliptic operator defined for all
f ∈ C2(Rd) by:

G :=
1

n
(∆−∇E · ∇) .

In particular, for all f ∈ C2(Rd) we have:

G(f) =
1

n

n∑
i=1

∂2iif −
n∑
i=1

xi∂if +
β

n

n∑
i,j=1
j ̸=i

∂if

xi − xj

=
1

n

n∑
i=1

∂2iif −
n∑
i=1

xi∂if +
β

2n

n∑
i,j=1
j ̸=i

∂if − ∂jf

xi − xj

In the case that 0 < β < 1, the particles collide leading to an explosion of the drift, with
positive probability. However, one can define the process for all times, for example by adding a
local time term to the stochastic differential equation. It is natural to expect that the universality
of the cutoff phenomenon works as for β /∈ (0, 1), but for simplicity, we do not consider this case
here.

Suppose now that β ⩾ 1. The Markov process Xn is not irreducible, but fortunately there is
a domain such that the particles never collide, and the order of the initial particles is preserved
at all times:

Proposition 32. Let us order the coordinates by defining the following convex domain

Dn := {x ∈ Rn : x1 < · · · < xn} .

Then, if xn0 ∈ Dn we have that the Dyson SDE admits a unique strong solution (Xnt )t⩾ 0 that
never leaves Dn in the sense that:

∀ t > 0, Xnt ∈ Dn a.s.

In particular, this is true for xn0 such that xn,10 = · · · = xn,n0 .

Proposition 33 (Invariant law). Dn is a recurrent class carrying a unique invariant law which
is reversible and given by:

πnβ :=
e−E(x1,...,xn)

Cβn
1(x1,...,xn)∈Dn

dx1 · · · dxn,

where Cβn is the normalization factor given by:

Cβn :=

ˆ
Dn

e−E(x1,...,xn)dx1 · · · dxn.

Remark 34 (Explicite formulation).

πnβ :=
1(x1,...,xn)∈Dn

Cβn

∏
i>j

(xi − xj)
β

n∏
i=1

e−nx
2
i /2dxi.
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Proposition 35. For any β ⩾ 0, the invariant law πnβ is log-concave with respect to the Lebesgue
measure as well as to N

(
0, 1n In

)
.

Proof. Since − log is convex on (0,+∞), the application (x1, . . . , xn) ∈ Dn 7−→ β
∑

i>j log
1

xi−xj ,
is convex. Hence, since V is convex on R, it follows that E is convex on Dn.

□

Proposition 36 (Spectral gap). The spectral gap is 1 for all n ⩾ 1.

Theorem 37 (Exponential convergence to equilibrium). If there exists some constant ρ ⩾ 0
such that V− ρ

2 |·|
2 is convex, then the Dyson process has exponential convergence to equilibrium.

2. Cutoff for relaxed processes

The following theorem comes from Saloff-Coste’s article [10, 24]. This theorem states that under
a so-called product condition and a relaxation condition, the process admits a cutoff. One might
wonder if the product condition is necessary and sufficient for diffusions. However, in the general
case, it is not, as Saloff-Coste demonstrates in [10]. We will then see that this theorem provides
a very interesting spectral criterion that can be used, for example, on the D.O.U. process.

2.1. Relaxation condition for cutoff

We consider the following framework:
− (Pt)t⩾ 0 : an ergodic Markov semigroup with a state space Sn,
− π : unique invariant probability measure,
− Sn0 : set of initial conditions.
Consider a distance or divergence dist and denote, when it exists :

dist∗n : t 7−→ sup
µ0∈Sn0

dist(µ0Pnt , π
n) and tnmix(ε) := tn,dmix(ε, S

n
0 ).

In the following, we denote : a≪ b for a/b = o(1) and a ≲ b for a/b = O(1).
Let us associate a relaxation time to the ergodic Markov semigroup (Pt)t⩾ 0 (when it exists).

We will see later how it is related to the spectral gap or to the curvature of this process.

Definition 38 (Relaxation Time). We say that the semigroup (Pt)t⩾ 0 has a relaxation time tnrel
for dist over Sn0 if there exists a constant C > 0 such that:

∀s, t ⩾ 0 : dist∗n(t+ s) ⩽ Ce−t/t
n
reldist∗n(s).

When C = 1, we then say that the process is curved.

Remark 39 (Relaxation time for a pointwise initial condition).

Theorem 40 (Cutoff for relaxed process). Let (Pt)t⩾ 0 be an ergodic Markov semigroup and a
unique invariant law π. Suppose that :

(i) (monotonicity) : (Pt)t⩾ 0 is monotone for dist over Sn0 ,
(ii) (relaxation condition) : (Pt)t⩾ 0 has a relaxation time tnrel for dist over Sn0 ,
(iii) (product-like condition) :

tnmix(ε) ≫ tnrel.

Then, the sequence exhibits cutoff.

Remark 41. In the general case, the product condition is sufficient but not necessary for the
cutoff. One may wonder if for diffusions, this condition is necessary.

Proof. Let’s denote d∗n := dist∗n and tnmix := tnmix(ε) for ε ∈ (0, 1) fixed. By relaxation condition
and monotonicity, we have for :



10 SAMUEL CHAN-ASHING

− t = tnmix(ε), s = εtnmix(ε) :

sup
t>(1+ε)tnmix

d∗n(t) ⩽ d∗n((1 + ε)tnmix) ⩽ d∗n(t
n
mix)Ce

−εtnmix/t
n
rel ⩽ εCe−εt

n
mix/t

n
rel

(iii)−−−→
n+∞

0,

− t = (1− ε)tnmix(ε), s = ε
2 t
n
mix(ε) :

inf
t<(1−ε)tnmix

d∗n(t) ⩾ d∗n((1−ε)tnmix) ⩾ d∗n((1−
ε

2
)tnmix)C

−1e
ε
2
tnmix/t

n
rel ⩾ εC−1e

ε
2
tnmix/t

n
rel

(iii)−−−→
n+∞

+∞,

□

Remark 42. If for all 0 ⩽ s ⩽ t,

The following application has already been covered in [6], but we simply provide an example
of how the previous introduction can, in some cases, easily allow one to conclude the existence
of a cutoff through comparison.

Application 43 (Cutoff for DOU). Let (Xnt )t⩾ 0 be the DOU process with β = 0 or β ⩾ 1 and
a unique invariant law πnβ . Let’s prove that for all d ∈

{
TV,H,Hellinger, I,W, χ2,Lp>1(π)

}
, and

ε ∈ (0, 1), the sequence exhibits cutoff.
It suffices to verify that the three previous conditions are satisfied for the different measures, and
in some cases use the comparison criterion. Supposed that we already have the cutoff for TV,
Hellinger, W (proved in [6], with a mixing time tnmix −→ ∞), the we already have the product-like
condition for H, χ2,Lp(π), I with comparison to TV. It then suffices to show the monotonicity,
the relaxation condition and the comparison of distances and divergences.

− (Monotonicity): for all d ∈
{
TV,H,Hellinger, I,W, χ2, ∥.∥p>1

}
, we have :

d∗n : t ⩾ 0 7−→ sup
µ0∈Sn0

d(µnt | πnβ ) is non-increasing.

The proof is given in [6] for d ∈
{
TV,H,Hellinger, I,W, χ2, ∥.∥p>1

}
and [10] for d = ∥.∥p>1.

− (Relaxation Condition): for all t ⩾ 0, we have the sub-exponential convergences :

∀d ∈
{
H, I, χ2

}
: d

(
µnt | πnβ

)
⩽ e−2td

(
µn0 | πnβ

)
.

and
∥µt − π∥p ⩽ Cpe

−cpt ∥µ0 − π∥p .

The proof is given in [6] and [10].
− (Comparison of distances/divergences): for all probability measures µ and ν on the same

space,
∥µ− ν∥2TV ⩽ 2H(ν | µ)

H(ν | µ) ⩽ 2χ(ν | µ) + χ2(ν | µ)

H(ν | P βn ) ⩽
1

2n
I(ν | P βn )

2 ∥µt − π∥TV ⩽ ∥µt − π∥p

The proof is given in [6] and Hölder.

2.2. Spectral criterion

The following corollary provides a sufficient condition for having a cutoff. This corollary is
particularly interesting when we know an eigenfunction associated with the spectral gap.
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Corollary 44 (Spectral criterion for the L2(π) distance). Let xn0 ∈ Sn0 . If there exists φn ∈
L2(πn) such that: for a constant c > 0 and all t ⩾ 0 and n ⩾ 1,

lim
n→∞

|φn(xn0 )|
∥φn∥2

= +∞ and |(Pnt − πn) (φn)(x
n
0 )| ⩾ e−cλnt|φn(xn0 )|,

then the product condition is satisfied for Sn0 = {δxn0 }.

Proof. Indeed, at t = tmix, by duality,

η ⩾ ∥µnt − πn∥2 = sup
∥g∥2=1

|(Pnt − πn)(g)| ⩾ e−cλnt
n
mix

|φn(xn)|
∥φn∥2

,

which imposes the product condition limn→∞ λnt
n
mix = +∞. □

Application of the spectral criterion for DOU

We will now use this theorem in the case of the DOU process. Let us begin with a spectral
analysis of its generator, which, as a reminder, is given by:

G :=
1

n
(∆−∇E · ∇) .

We denote πn0 := N
(
0, σ

2

2θ In

)
.

Proposition 45 (Spectral analysis for the non-interactive case OU). The operator:

G : L2(Rn, πn0 ) −→ L2(Rn, πn0 ),

is well-defined and self-adjoint. Moreover:

• G globally preserves the set of polynomials,

• Sp(G) = Z−,

• The eigenspaces (F−m)m∈N are finite-dimensional and each F−m is generated by multivari-
ate Hermite polynomials of degree m (that is, by tensor products of univariate Hermite
polynomials).

In particular, F0 is the vector space of constant functions, while F1 is the n-dimensional vector
space of all linear functions.

Corollary 46 (Invariant law). It is the reversible invariant distribution given by:

πn0 = N
(
0,
σ2

2θ
In

)
= N

(
0,
σ2

2θ

)⊗n

Definition 47 (Heat kernel). It is the the density of the law L(Xnt | Xn0 = x) with respect to
the invariant measure πn0 :

pt(x, · ) :=
dµxt
dπn0

.

Proposition 48 (Properties of the heat kernel). For all x ∈ Rn, we have:

• (long-time behavior):
lim
t→∞

pt(x, ·) = 1.

• (norm Lp(πn0 )):

∥µxt − πn0 ∥TV = ∥pt(x, ·)− 1∥1 ⩽ ∥pt(x, ·)− 1∥p ⩽ ∥pt(x, ·)− 1∥q , 1 ⩽ p ⩽ q.
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• (case p = 2): let Am be an orthonormal basis of Fm ⊂ L2(πn0 ),

∥pt(x, ·)− 1∥2 =

∞∑
m=1

∑
ψ∈Am

e−2mt∥ψ(x)∥22 and ∥pt(x, ·)− 1∥2 ⩾ e−2t
∑
ψ∈A1

|ψ(x)|2.

Remark 49 (Case p = 2 and cutoff). Since we can estimate
∑

ψ∈A1
|ψ(x)|2 (this is the square of

the norm of the projection of δx onto A1), the above inequality leads to a lower bound on the χ2

cutoff (i.e. L2).
Let L2

sym(πnβ ) denote the Hilbert space of symmetric functions of n variables (x1, . . . , xn),
defined on Rn, and square-integrable with respect to the measure πnβ .

Proposition 50 (Spectral analysis for the interactive case DOU with β ⩾ 1). The operator:

GDOU : L2
sym(π

n
β ) −→ L2

sym(π
n
β )

is well-defined and self-adjoint. Moreover:

• G globally preserves the set of symmetric polynomials,

• (spectrum): Sp(G) = Z−,

• (eigenspaces): (F−m)m∈N are finite-dimensional and each F−m is generated by multivariate
Hermite polynomials of degree m.

In particular, F0 is the vector space of constant functions, while F1 is the n-dimensional vector
space of all linear functions.

Proof. See [9]. □

Remark 51. Note that, in the present interactive case, the integrability properties of the heat
kernel are not known: in particular, we do not know if pt(x, ·) belongs to Lp(πnβ ) for t > 0,
x ∈ Dn, and p > 1.

We use the spectral criterion to demonstrate that the DOU process has a cutoff in L2(πnβ )
norm and for Sn0 = {δxn0 }. To do this, let us observe how to choose xn0 ∈ Sn0 .

Application 52 (Spectral criterion for DOU). Let φn be the eigenvector associated with the
eigenvalue −1 of G, defined by:

φn : x 7−→ x1 + · · ·+ xn.

Then we have:

∥φn∥2L2(πn
β )

:= ⟨φn, φn⟩L2(πn
β )

= −⟨Gφn, φn⟩L2(πn
β )

def.
=

ˆ
∥∇φn∥2 dπnβ =

ˆ
n dπnβ = n,

since ∇φn = (1, . . . , 1). Therefore, it is sufficient to choose xn0 such that xn0 → +∞ as n→ ∞.

Thus, since we have monotonicity, the spectral gap relaxation condition, and the product-like
condition by the spectral criterion, the DOU process indeed has a cutoff in L2(πnβ ) norm and for
Sn0 = {δxn0 }, according to Theorem 40.

2.3. Conclusion and perpectives

Another promising research direction is to extend the results obtained in [6] to other integrable
Dyson-type diffusions, particularly the Laguerre and Jacobi beta ensembles. These studies would
allow us to revisit the constraints on initial conditions using the microscopic analysis developed
in random matrix theory.

Moreover, the cutoff phenomenon in McKean-Vlasov processes, with potential links to metasta-
bility, is an essential topic for future research. Discussions with my advisor and during my
research visit have led to the following perspectives:
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1. Explore whether the product condition is necessary for diffusions.

2. Explore the cutoff phenomenon in the remaining integrable Dyson-type dynamics asso-
ciated with the Laguerre and Jacobi beta ensembles. Revisit the constraints on initial
conditions using the microscopic analysis developed in beta ensembles within random ma-
trix theory.

3. Study the cutoff phenomenon for general ergodic diffusions in non-compact spaces by con-
necting the works of [6] and [10, 11, 24, 26].

4. Investigate the cutoff for the dynamics of systems composed of n i.i.d. ergodic particles.

5. Explore the cutoff for processes with polynomial convergence towards equilibrium.

6. Study the cutoff for hypoelliptic dynamics, particularly Gaussian chains of oscillators.

7. Analyze the link between the cutoff of McKean-Vlasov processes and metastability.

3. Varentropic method

In this section, we reproduce the proof from [23] in the case of a curved ergodic Markov process
with values in a general state space. We highlight that the obtained condition is a control of the
semi-group (Pnt ). In particular, we will see applications of this theorem where such control is
possible: the case of finite Markov chains (the case from [23] which is the basis of our study), the
case of the O.U. process, and finally the case of a compact state space with Brownian motion on
the sphere. The objective is to highlight the discrete and continuous cases, as well as the types
of conditions on the initial conditions.

3.1. Main result

Let Sn0 be the set of pointwise initial conditions, i.e. a subset of Rn. We are interested in the
cutoff phenomenon for the total variation distance:

tnmix(ε) := tn,TV
mix (ε, Sn0 ) := inf{t ⩾ 0 : sup

Sn0

∥Loi(Xnt )− πn∥TV ⩽ ε}.

Theorem 53 (Cutoff in the general case). Let (Pnt )t⩾ 0 be an ergodic Markov semigroup on Sn0 ,
a unique invariant law πn and its spectral gap λn. Suppose that for all ε ∈ (0, 1):

(i) (curvature condition) : (Pnt )t⩾ 0 has a non-negative curvature : CD(0,∞),
(ii) (product condition) : 1 ≪ λnt

n
mix(ε),

(iii) (Fisher condition) :

I∗n(t
n
mix(ε)) ≪ λ2nt

n
mix(ε) where I∗n(t) = sup

x∈Sn0
Fisher(δxPnt | πn).

Then, for all ε ∈ (0, 1), the sequence exhibits cutoff for TV.

Remark 54. This slightly more general formulation is very enlightening because it specifies what
happens in a finite space, and it gives us clues for the infinite case on what needs to be done in
the unbounded case:
− For finite Markov chains, the logarithm of the kernel is a Lipschitz function, so it is bounded

on a finite set. The interpretation of this bound is discussed in [23].
− For O.U., we have an explicit formula for the Fisher information in the case of point initial

conditions. However, this is not bounded, but by taking controlled initial conditions, it
becomes bounded.

Remark 55 (Type of curvature). It should be noted that in the proof below, we use tools related
to Bakry-Émery curvature and not Ollivier-Ricci curvature.
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3.2. Proof

We denote µxt for δxPnt .

Setup

In this section, we consider :

d(µ | ν) := ∥µ− ν∥TV and d∗n := sup
x∈Sn0

d(µxt | π).

Recall that the relative entropy (Kullback-Leibler Divergence) is defined by

H(µ | ν) := Kullback(µ | ν) =


ˆ

log

(
dµ

dν

)
dµ ∈ [0,+∞] si µ≪ ν,

∞ sinon,

and the Fisher Information by :

I(µ | ν) := Fisher(µ | ν) =

ˆ ∣∣∣∣∇ log

(
dµ

dν

)∣∣∣∣2 dµ.
In [23], to exhibit a cutoff, the author uses the varentropy defined by :

Definition 56 (Varentropy).

V(µ | ν) := Varentropy(µ | ν) =


ˆ (

log
dµ

dν
−H(µ | ν)

)2

dµ ∈ [0,+∞] si µ≪ ν,

∞ sinon.

We then define the following:

H∗
n(t) := sup

x∈Sn0
H(µxt | π), V∗

n(t) := sup
x∈Sn0

V(µxt | π) and I∗n(t) := sup
x∈Sn0

I(µxt | π).

Outline of the proof

To show that there exists a cutoff, it is equivalent to show that:

tnmix(ε)− tnmix(1− ε) = o
n→∞

(tnmix(1− ε))

To do so, we proceed as follows. On the one hand, we start by establishing an entropic upper-
bound by linking the mixing time to the entropy (Kullback), using the spectral gap and consid-
ering a sufficiently large time:

tnmix(ε) ⩽ t+
1

λnε
(1 + ε+ 2H∗

n(t)) .

Next, we exploit an entropic lower-bound and relate the entropy to the varentropy by viewing
entropy as the expectation of a log and using the Bienaymé-Tchebychev inequality:

∥µ− π∥TV ⩽ 1− ε =⇒ H∗
n(t) ⩽

1 +
√

V∗
n(t)

ε
.

From this, we obtain the first following inequality:

tnmix(ε)− tnmix(1− ε) ⩽
2

ε2λn

(
2 +

√
V∗
n (t

n
mix(1− ε))

)
.

On the other hand, we exploit the positive curvature through the local Poincaré inequality:

Pt(f
2)− (Ptf)

2 ⩽ 2tPtΓ(f).

By applying this inequality to the logarithm of the kernel (f = log
dµxt
dπ

), we obtain the link
between varentropy and Fisher information as follows:

V∗
n(t) ⩽ 2t× I∗n(t).

In proofs and lemmas, we drop the n sub/superscripts for simplicity.
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The entropic concentration phenomenon

Proposition 57 (Entropic concentration implies cutoff). For all ε ∈ (0, 1),

tnmix(ε)− tnmix(1− ε) ⩽
2

ε2λn

(
2 +

√
V∗
n (t

n
mix(1− ε))

)
.

Lemma 58. Let ν be a probability measure such that ν ≪ π. Then :

∥νPt − π∥TV ⩽
1

2
e−λt

∥∥∥∥dνdπ
∥∥∥∥
∞
,

where λ is the spectral gap.

Proof. By the definition of the spectral gap λ, we have, for all s ⩾ 0 and f ∈ L2(π):

∥Ps(f)− π(f)∥2L2(π) ⩽ e−2λt ∥f∥2L2(π) ,

In particular, since f = dν
dπ exists, then, denoting d(νPs) =: fsdπ:

∥fs − 1∥2L2(π) ⩽ e−2λt∥f − 1∥2L2(π)

and

∥νPs − π∥TV =
1

2
∥fs − 1∥L1(π) ⩽

1

2
∥fs − 1∥L2(π) ⩽

1

2
e−λt∥f − 1∥L2(ν) ⩽

1

2
e−λt∥f∥∞.

□

Lemma 59 (Entropic upper-bound). For all t ⩾ 0 and all ε ∈ (0, 1):

tnmix(ε) ⩽ t+
1

λε
(1 + ε+ 2H∗

n(t)) .

Outline of the proof. We recall that by definition of the mixing time: tnmix(ε) ⩽ t if and only if
d∗n(t) ⩽ ε. In particular:

∀s, t ⩾ 0 : d∗n(t+ s) ⩽ ε ⇐⇒ tnmix(ε) ⩽ t+ s.

(1) To show that d∗n(t+ s) ⩽ ε, it suffices, by definition of the supremum, to prove that:

∀µ ∈ P(X) : ∥µPs − π∥TV ⩽ ε,

since this holds for µ := δx0Pt and

δx0PtPs = δx0Pt+s.

(2) We conclude by taking: s := s(t, x) := 1
λε (1 + ε+ 2H(µxt | π)), because:

∥δx0Pt+s − π∥TV ⩽ ε ⇐⇒ tnmix(ε) ⩽ t+ s(t, x0) ⩽ t+ s∗(t),

where s∗(t) := supx0 s(t, x0) = 1
λε (1 + ε+ 2H∗

n(t)).
□

Proof. Let µ be such that H(µ | π) > 0. For all ε ∈ (0, 1), define the event

Aε :=

{
x : log

(
dµ

dπ
(x)

)
< 1 +

2H(µ | π)
ε

}
.
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(1) By definition of Acε and since µ(Acε) =
´
Ac

ε
dµ, we have :(

1 +
2H(µ | π)

ε

)
µ(Acε) ⩽

ˆ
Ac

ε

log

(
dµ

dπ

)
dµ = H(µ | π)−

ˆ
Aε

log

(
dµ

dπ

)
dµ.

Since − log
(
dµ
dπ

)
= log

(
dπ
dµ

)
and log(u) ⩽ u− 1, we have :(

1 +
2H(µ | π)

ε

)
µ(Acε) ⩽ H(µ | π) + π(Aε)− µ(Aε) ⩽ H(µ | π) + µ(Acε).

After simplification, this gives
µ(Acε) ⩽

ε

2
.

In particular, µ(Aε) ⩾ 1
2 .

(2) The conditional probability measure µε := µ( · | Aε) := µ( · ∩Aε)
µ(Aε)

satisfies

dµε

dπ
=

1Aε

µ(Aε)

dµ

dπ
=⇒

∥∥∥∥dµεdπ

∥∥∥∥
∞

=
1

µ(Aε)

∥∥∥∥1Aε

dµ

dπ

∥∥∥∥
∞

⩽ e2+
2H(µ|π)

ε ,

where, for the last inequality, we used that µ(Aε) ⩾ 1
2 ⩾ 1

e and :∥∥∥∥1Aε

dµ

dπ

∥∥∥∥
∞

= sup
x∈Aε

∣∣∣∣dµdπ (x)
∣∣∣∣ déf.
⩽ exp

(
1 +

2H(µ | π)
ε

)
.

(3) We denote µεs := µεPs ≪ π. Consequently, for all s ⩾ 0, by using step (2) and Lemma 58:

∥µεs − π∥TV ⩽
1

2
e−λs+2+

2H(µ|π)
ε .

Hence, for all s ⩾ s∗ := 1
λ

(
1 + 2H(µ|π)+1

ε

)
, we get

∥µεs − π∥TV ⩽
1

2
e1−

1
ε ⩽

ε

2
.

(4) On the other hand, we simply have by contractivity of Markov kernels

∥µPs − µεs∥TV = ∥µPs − µεPs∥TV ⩽ ∥µ− µε∥TV = µ(Acε) ⩽
ε

2
.

(5) Thus, by the triangle inequality, we obtain, for all s ⩾ s∗,

∥µPs − π∥TV ⩽ ∥µPs − µεs∥TV + ∥µεs − π∥TV ⩽ ε.

□

Lemma 60 (Entropic lower-bound). For any µ ∈ P(X) and any ε ∈ (0, 1) :

dTV(µ, π) ⩽ 1− ε =⇒ H∗
n(t) ⩽

1 +
√

V∗
n(t)

ε
.

Proof. Proved in [23]. □

Proof of proposition 57. Let ε ∈ (0, 1) and t := tnmix(1− ε). The first lemma gives

tnmix(ε) ⩽ t+
1

λε
(1 + ε+ 2H∗

n(t)) .

But the second lemma with µ = µxt gives

H∗
n(t) ⩽

1 +
√

V∗
n(t)

ε
.

Combining the two inequalities and using ε ⩽ 1 provides the desired result. □
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Non-negative curvature implies entropic concentration

Lemma 61 (Local concentration inequality). For all t ⩾ 0:

Pnt (f
2)− (Pnt f)

2 ⩽
1− e−2ρt

ρ
Pnt Γ(f) ⩽ 2tPnt Γ(f).

Proof. Since CD(ρ,∞) is satisfied by (Pt)t⩾ 0, then :

Pt(f
2)− (Ptf)

2 = 2

ˆ t

0
Pt−sΓ(Psf) ds and Γ(Psf) ⩽ e−2ρsPsΓ(f).

For the second inequality we use that 1− e−x ⩽ x. □

Proof of theorem 53. Applying this lemma to f = log dµt
dπ , we obtain:

V(µt | π) ⩽ 2t×
ˆ ∣∣∣∣∇ log

(
dµt
dπ

)∣∣∣∣2 dµt = 2t× I(µt | π),

since:

Pt

(
log

dµt
dπ

)
= H(µt|π) and Γ

(
log

dµt
dπ

)
=

∣∣∣∣∇ log

(
dµt
dπ

)∣∣∣∣2 .
Now taking the maximum over Sn0 :

V∗
n(t) ⩽ 2tI∗n(t).

Then : √
V∗
n (t

n
mix(1− ε))

λntnmix(1− ε)
⩽

√
2I∗n(t

n
mix(1− ε))

λn
√
tnmix(1− ε)

.

However, by Proposition ??, we have:

tnmix(ε)− tnmix(1− ε)

tnmix(1− ε)
⩽

2

ε2

(
2

λntnmix(1− ε)
+

√
V∗
n (t

n
mix(1− ε))

λntnmix(1− ε)

)

⩽
2

ε2

(
2

λntnmix(1− ε)
+
√
2

√
I∗n(t

n
mix(1− ε))

λn
√
tnmix(1− ε)

)
−−−→
n→∞

0.

□

3.3. Applications for finite Markov chains

In all that follows, the objective is to control the Fisher information. In this subsection, we
consider a finite state space Sn0 . The full proof of the following corollary is given in [23].

Corollary 62 (Cutoff for finite Markov chains, Salez). Consider a sequence of irreducible
transitions matrices with symmetric support and non-negative Bakry-Émery curvature. Suppose
that for every fixed ε ∈ (0, 1), we have

tnmix(ε) ≫ (tnrel log∆
n)2 , (⋆)

where ∆n = max
{
Pn(x, y)−1, x ∼ y

}
is the sparsity parameter. Then, the sequence exhibits

cutoff. More precisely, for every ε ∈ (0, 12), we have

tnmix(ε)− tnmix(1− ε) ≲
√
tnmix(1/4) t

n
rel log∆

n.

Note that the "product-like" condition (⋆) implies the product condition (ii). It remains to
control the Fisher information.
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Lemma 63 (Control of the Fisher Information for finite Markov chains).

I∗n(t
n
mix(ε)) ≲ log2∆n.

Outline of the proof.
(1) Since our Markov chain is finite, we have the trivial bound Γ(f) ⩽ ∥f∥2Lip, and by the

stochasticity of the operator Ps :

PsΓ(f) ⩽ ∥f∥2Lip =⇒ I∗n(t) = max
x∈Sn0

PsΓ

(
log

Pt(x, ·)
π

)
⩽ max

x∈Sn0

∥∥∥∥log Pt(x, ·)
π

∥∥∥∥2
Lip

.

(2) Hence, one shows that if P has symmetric support, then :

∀ t ⩾
diam(Sn0 )

4
: max

x∈Sn0

∥∥∥∥log Pt(x, ·)
π

∥∥∥∥2
Lip

⩽ 3(1 + log∆).

(3) Thus, we show that for all ε ∈ (0, 1):

diam(Sn0 ) ⩽ 2tnmix(ε) +

√
8tnmix(ε)

1− ε
+

√
8trel
1− ε

.

(4) Since
√
trel ≪ tnmix(ε), by step (3) we have :

diam(Sn0 ) ⩽ (2 + o(1))tnmix(ε) and tnmix(ε) ⩾
diam(Sn0 )

4
.

(5) Applying step (2) and to remark that since ∆ ⩾ 2, we have :

I∗n(t
n
mix(ε)) ⩽ 9(1 + log∆)2 ≲ log2∆ ≪ λ2nt

n
mix(ε).

□

3.4. The Ornstein-Uhlenbeck case is not concerned

In this section, we will examine whether we can apply the previous results to OU processes.
Recall the properties of OU process: for σ2n > 0 and θn ∈ R,

dXnt = σn dB
n
t − θnX

n
t dt, Xn0 ∼ µn0 (θn, σn).

− (Mehler formula) :

µxt := Law(Xnt | Xn0 = x) = N
(
xe−θnt,

σ2n
2

1− e−2θnt

θn
In

)
=

n⊗
i=1

N
(
xie

−θnt,
σ2n
2

1− e−2θnt

θn

)
.

− (Invariant law) :

πn := N
(
0,

σ2n
2θn

In

)
= N

(
0,

σ2n
2θn

)⊗n
.

− (Spectral gap) : λn = θn.
− (Curvature) : ρ = 1.

Lemma 64 (Entropy and Fisher Information for OU).

• (Entropy) :

H(µxt | π) = −n
2
log(1− e−2θnt) + e−2θnt

(
θn|x|2

σ2n
− n

2

)
.
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• (Fisher Information) :

I(µxt | π) =
ne−4θnt

σ2n(1− e−2θnt)
+
e−2θnt|x|2

σ4n
.

Proof. Hence, we have:

∀ y ∈ Rn : log

(
dµxt
dπ

)
(y) = −n

2
log(1− e−2θnt) +

(
−|y − xe−θnt|2

2(1− e−2θnt)
+

|y|2

2

)
2θn
σ2n

.

Integrating with respect to µxt (dy), we have:

H(µxt | π) = −n
2
log(1− e−2θnt) +

(
− V(µxt )
2(1− e−2θnt)

+
m2(µ

x
t )

2

)
2θn
σ2n

,

where: V(µxt ) = n(1− e−2θnt) σ
2
n

2θn
, m2(µ

x
t ) := V(µxt ) +m1(µ

x
t )

2 and m1(µ
x
t ) := xe−θnt. Then:

σ2n
2θn

∇ log

(
dµxt
dπ

)
(y) = −y − xe−θnt

1− e−2θnt
+ y = − e−2θnt

1− e−2θnt
y +

e−θnt

1− e−2θnt
x.

Thus, squaring and integrating with respect to µxt (dy), we have:(
σ2n
2θn

)2

I(µxt | π) =

(
e−2θnt

1− e−2θnt

)2

m2(µ
x
t )−

2e−3θnt

(1− e−2θnt)2
x ·m1(µ

x
t ) +

(
e−θnt

1− e−2θnt

)2

|x|2.

Hence we get the result. □

Lemma 65 (Mixing time for OU). Let (Xnt ) be the OU process and invariant law π. Suppose
that (an) is a real sequence satisfying infn an > 0. Then, for all ε ∈ (0, 1), we have that the
sequence exhibits cutoff for TV and the mixing time is given by:

tnmix({x}) =
1

2θn
log

(
θn
2σ2n

|x|2
)

and tnmix([−an, an]) =
1

2θn
log

(
nθn
2σ2n

a2n

)
.

The case where θn = 1 and σ2n = 2
n is given by:

tnmix({x}) = log

(√
n |x|
2

)
and tnmix([−an, an]) = log

(nan
2

)
.

tnmix({x}) = log
(√
n |x|

)
and tnmix([−an, an]) = log (nan) .

Proof. We adapt the work done in Section 3 of [6] to calculate the Hellinger distance:

Hellinger2(µxt , π
n) = 1− exp

(
− θn
2σ2n

|x|2e−2θnt

2− e−2θnt
+
n

4
log

(
4
1− e−2θnt

2− e−2θnt

))
.

□

Fisher Information at mixing time is too broad

Now that we have the mixing time, we will see that the inequality involving the Fisher information
is far too broad. Subsequently, we will see that, in fact, we can stop before introducing the
varentropy.

Lemma 66 (Fisher Information at mixing time for OU).

I∗n(t
n
mix) =

4nσ2n

θn |x|2
(
θn |x|2 − 2σ2n

) +
2

θnσ2n
.

The case where θn = 1 and σ2n = 2
n is given by:

I∗n(t
n
mix) =

8

|x|2
(
|x|2 − 4

n

) + n.
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Proof. Straightforward. □
Let’s see that Fisher condition is not verified for any OU process. In fact, even in the case where
θn = 1 and σ2n = 2

n , we obtain the following very strong condition on the initial conditions:

I∗n(t
n
mix) ≪ tnmix ⇐⇒ n ≪ log |x|.

This implies that this criterion is not very relevant for one of the simplest diffusions, as it is
known to exhibit a cutoff for any given initial conditions. In the following subsection, we will
identify where this condition fails.

Refinement of the cutoff criterion using entropy

Recall that we have:

tnmix(ε)− tnmix(1− ε) ⩽
2

ελn
(1 + H∗

n (t
n
mix(1− ε))) .

It then suffies to show the product-like condition and that:

H∗
n (t

n
mix(1− ε)) ≪ λnt

n
mix(1− ε).

Lemma 67 (Entropy at mixing time for OU). Suppose that the initial conditions satisfy |x|2 ⩾
2σ2

n
θn

. Then we have that:

H∗
n(t

n
mix) = −n

2
log

(
1− 2σ2n

θn |x|2

)
+ 2− nσ2n

θn |x|2
.

The case where θn = 1 and σ2n = 2
n is given by:

H∗
n(t

n
mix) = −n

2
log

(
1− 4

n |x|2

)
+ 2− 2

|x|2
.

Then, since |x|2 ⩾ 2σ2
n

θn
, we have that:

H∗
n(t

n
mix) ≪ λ2nt

n
mix.

Thus, one might wonder if Chebyshev’s inequality is too loose to provide a sufficient condition
for a cutoff.

3.5. Conclusion and perspectives

In this study, we observed that the approach by Salez based on varentropy, although effective for
certain types of processes, has limitations when applied to diffusions. This method requires very
specific initial conditions, making it less applicable in more general situations. A deeper analysis
shows that in many cases, stopping at entropy alone, without needing to control the variance of
the logarithm, would suffice to ensure a cutoff.

Nevertheless, Salez’s work provides a solid foundation to search for a similar but more general
criterion, by leveraging the various functional inequalities available. The following perspectives
arise directly from this reflection:

1. Explore the cutoff phenomenon for general ergodic diffusions in compact spaces by following
the varentropy method developed in [23]. For example: Brownian motion on the torus Tn
or on the sphere Sn.

2. Investigate the control of ∇ log pt(x, y) and its connection with Harnack and Li–Yau esti-
mates.
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